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Abstract 

Among the many relationships of numbers that have fascinated humans are those that suggest the 

arrangement of points representing numbers as particular geometrical figures. The Centred Polygonal 

Numbers are a less well known family of Figurate Numbers, this time generated by arranging points 

into a sequence of nested polygons of increasing size with a common centre. In this paper, we will 

explore some interesting mathematical properties of Centred Polygonal Numbers.  
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1. Introduction 

The centred polygonal numbers are class of figurate numbers, each formed by a central dot, surrounded 

by polygonal layers of dots with a constant number of sides.Such shapes were of importance not just 

in mathematics but also in other branches of science like crystallography and discrete geometry. 

Several mathematicians beginning the great Greek Era, two millennia ago, have considered such 

numbers and have established many numerical relationships pertaining to them. In this paper, we will 

be proving some basic results concerning Centred Polygonal Numbers.  

 

2. Definition  

The nth centred polygonal number of order k is defined by 

      𝐶𝑃𝑘,𝑛 =
𝑘𝑛(𝑛 + 1)

2
+ 1           (1) 

 

In particular if k =3,then 

      𝐶𝑃3,𝑛 =
3𝑛(𝑛 + 1)

2
+ 1           (2) 

are called Centred Triangular Numbers. 

Ifk=4, then 

𝐶𝑃4,𝑛 =
4𝑛(𝑛 + 1)

2
 + 1        (3) 

are called Centred Square Numbers 

If k= 6, then 

𝐶𝑃6,𝑛 =
6𝑛(𝑛 + 1)

2
 + 1        (4) 

are called Centred Hexagonal Numbers.  
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3. Theorem 1 

If   𝐶𝑃𝑘,𝑛are centred polygonal numbers, then theCentred Triangular Numbers are sum of three 

consecutive Triangular Numbers. That is, 𝑇𝑛−1 + 𝑇𝑛 + 𝑇𝑛+1 = 𝐶𝑃3,𝑛   (5)  

Proof:  

𝑇𝑛−1 + 𝑇𝑛 + 𝑇𝑛+1 =
(𝑛 − 1)(𝑛 − 1 + 1)

2
+

𝑛(𝑛 + 1)

2
 +

(𝑛 + 1)(𝑛 + 1 + 1)

2
 

      =
1

2
[𝑛2 − 𝑛 + 𝑛2 + 𝑛 + 𝑛2 + 2𝑛 + 𝑛 + 2] =  

1

2
[3𝑛2 + 3𝑛 + 2] =

3𝑛2 + 3𝑛

2
+ 1 

=
3𝑛(𝑛 + 1)

2
+ 1 = 𝐶𝑃3,𝑛

 

This completes the proof.  

An illustration of expressing the centred triangular number 10 as sum of three triangular numbers is 

provided in Figure 1.  

 
Figure 1: 1+3+6 =10 

Centred Triangular Numbers are 1,4,10,19,31,46,85,109,136,166,199,235,274, … 

4. Theorem 2 

The Centred Square Numbers are sum of two consecutive Square Numbers. 

𝐶𝑃4,𝑛 = 𝑛2 + (𝑛 + 1)2       (6) 

Proof: 

𝐶𝑃4,𝑛 =
4𝑛(𝑛 + 1)

2
+ 1 

= 2𝑛2 + 2𝑛 + 1 

= 𝑛2 + (𝑛 + 1)2 

This completes the proof. 

5. Theorem 3 

The Centred Hexagonal Numbers are difference of two consecutive cubes. 

𝐶𝑃6,𝑛 = (𝑛 + 1)3 − 𝑛3 

Proof: By Definition of Centred Hexagonal Numbers, we have  

𝐶𝑃6,𝑛 =
6𝑛(𝑛 + 1)

2
+ 1 

           = 3𝑛2 + 3𝑛 + 1 

                                                            = 𝑛3 + 3𝑛2 + 3𝑛 + 1 − 𝑛3 = (𝑛 + 1)3 − 𝑛3 

This completes the proof. 

An illustration of expressing the centred hexagonal number 19 is shown in Figure 2.  

                                                                                                         
Figure 2 

The Centred Hexagonal Numbers are 1, 7, 19, 37, 61, 91, 127, 169, 217, 271, 331, 397… 
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6.Theorem 4 

The Centred Polygonal Numbers and Square Numbers satisfy the following equation  
𝐶𝑃𝑘,𝑛 + 𝐶𝑃𝑘,𝑛−1 − 2

𝑘
= 𝑛2 

where 𝐶𝑃𝑘,𝑛 =
𝑘𝑛(𝑛+1)

2
+ 1 

Proof:    By definition, 𝐶𝑃𝑘,𝑛 =
𝑘𝑛(𝑛+1)

2
+ 1 

𝐶𝑃𝑘,𝑛 + 𝐶𝑃𝑘,𝑛−1 − 2

𝑘
=

(
𝑘
2 𝑛(𝑛 + 1) + 1) + (

𝑘
2 𝑛(𝑛 − 1) + 1) − 2

𝑘
 

    =
𝑘

2
(𝑛(𝑛+1)+(𝑛−1)(𝑛))

𝑘
= 2

𝑛2

2
= 𝑛2 

 Hence, 
𝐶𝑃𝑘,𝑛+𝐶𝑃𝑘,𝑛−1−2

𝑘
= 𝑛2 

This completes the proof. 

 

Conclusion  

After defining Centred Polygonal Number of order k, we have derived four elementary properties 

related to such numbers. In particular, in theorem 1, we have proved that the Centred Triangular 

Numbers are sum of three consecutive Triangular Numbers. In theorem 2, we have proved that the 

Centred Square Numbers are sum of two consecutive square numbers. In theorem 3, we have proved 

that the Centred Hexagonal Numbers are difference of two consecutive cubes and finally in theorem 

4, we have established a nice relationship between Centred Polygonal Numbers and Square Numbers. 

These elementary results will provide more insights upon understanding the patterns of Centred 

Polygonal Numbers. There are ample scope for proving more results and relationships as that of done 

in this paper.  
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